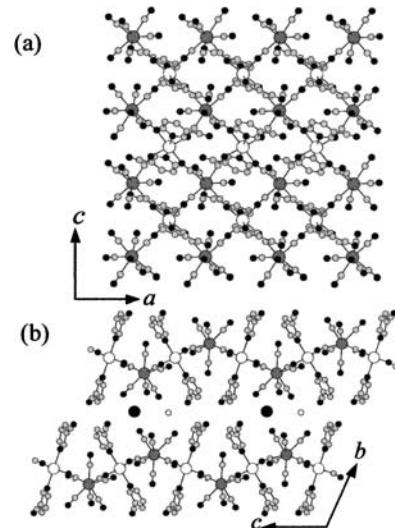


## Crystal Structure and Magnetic Properties of Two-dimensional Cyanide-bridged Bimetallic Assembly Composed of $\text{Cs}^{\text{I}}[\text{Mn}^{\text{II}}(3\text{-cyanopyridine})_2\{\text{W}^{\text{V}}(\text{CN})_8\}]\cdot\text{H}_2\text{O}$

Yoichi Arimoto,<sup>†</sup> Shin-ichi Ohkoshi,<sup>†</sup> Zhuang Jin Zhong,<sup>†</sup> Hidetake Seino,<sup>††</sup> Yasushi Mizobe,<sup>††</sup> and Kazuhito Hashimoto<sup>\*†</sup>

<sup>†</sup>Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904

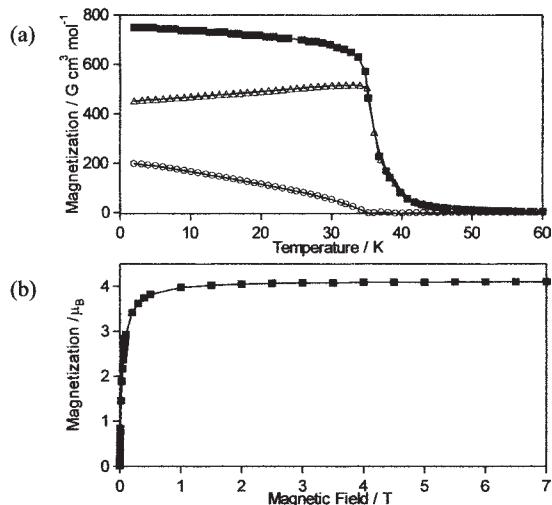

<sup>††</sup>Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505

(Received May 7, 2002; CL-020385)

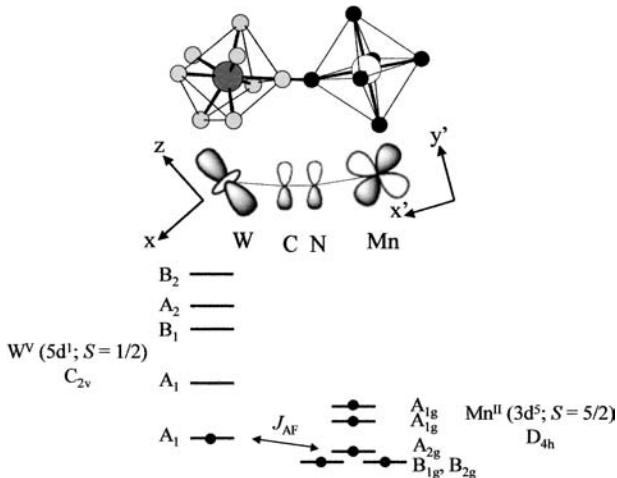
We have synthesized a two-dimensional manganese(II) octacyanotungstate(V)-based ferrimagnet with a magnetic ordering temperature of 35 K. Single crystal analysis showed that  $\text{Mn}^{\text{II}}$  ion was axially capped by 3-cyanopyridines, forming a two-dimensional structure. This bimetallic assembly showed ferri-magnetic properties due to the antiferromagnetic interaction between magnetic orbitals of  $d_{z^2}$  on  $\text{W}^{\text{V}}$  ion and  $d_{x^2-y^2}$  on  $\text{Mn}^{\text{II}}$  ion in the inside of the two dimensional layer.

There has been a great interest in the preparation of molecule-based magnets in the last 15 years.<sup>1,2</sup> Hexacyanometalates  $[\text{M}(\text{CN})_6]^{n-}$  have been often used as a molecular building block of molecule-based magnets. One of reasons of this is that a magnetic structure can be rationally designed because of the octahedral coordination geometry of  $[\text{M}(\text{CN})_6]^{n-}$ .<sup>3</sup> Octacyanometalates  $[\text{M}(\text{CN})_8]^{n-}$  ( $\text{M} = \text{Mo, W}$ ;  $n = 4, 5$ ) are also an attractive building block.<sup>4</sup> They can take various coordination geometries such as square antiprism ( $D_{4h}$ ), dodecahedron ( $D_{2d}$ ), and bicapped trigonal prism ( $C_{2v}$ ).<sup>5</sup> In addition, their assembled metal compounds could form various dimensional crystal structures, e.g., zero-, one-, two-, and three-dimensional structures. We may obtain such a various structures by choosing coordinated molecules. For example, in the system of cyano-bridged manganese(II) octacyano-tungstate(V) with a coordinated molecule of  $\text{H}_2\text{O}$ , a three-dimensional ferrimagnet  $[\text{Mn}^{\text{II}}_6(\text{H}_2\text{O})_9\{\text{W}^{\text{V}}(\text{CN})_8\}_4\cdot 13\text{H}_2\text{O}]_n$  with a magnetic ordering temperature ( $T_c$ ) of 54 K was obtained.<sup>6</sup> In contrast, when a coordinated molecule was an ethanol, a zero-dimensional structural cluster  $\{\text{Mn}^{\text{II}}_9[\text{W}^{\text{V}}(\text{CN})_8]_6\cdot 24\text{C}_2\text{H}_5\text{OH}\}$  ( $S = 39/2$ ) was obtained.<sup>7</sup> In this paper, we report a two-dimensional cyano-bridged manganese(II)-tungsten(V)-based magnet,  $\text{Cs}^{\text{I}}[\text{Mn}^{\text{II}}(3\text{-cyanopyridine})_2\{\text{W}^{\text{V}}(\text{CN})_8\}]\cdot\text{H}_2\text{O}$  (**1**), and its magnetic properties.

The compound **1** was prepared by mixing an aqueous solution of  $\text{Cs}_3[\text{W}(\text{CN})_8]$  and an aqueous solution containing  $\text{MnCl}_2$  and 3-cyanopyridine.<sup>8</sup> In the IR spectra, two CN stretching peaks of 3-cyanopyridine ( $\nu_{\text{C}\equiv\text{N}} = 2246$ , and  $2240\text{ cm}^{-1}$ ) and seven peaks due to bridged CN ligands between  $\text{W}^{\text{V}}$  and  $\text{Mn}^{\text{II}}$  ions ( $\nu_{\text{C}\equiv\text{N}} = 2182, 2177, 2161, 2155, 2150, 2145$ , and  $2140\text{ cm}^{-1}$ ) were observed.<sup>9-11</sup> The single crystal X-ray structural analysis showed that **1** consisted of a two-dimensional layer of cyano-bridged manganese(II)-tungstate(V) (Figure 1).<sup>12</sup> In the inside of layer, four CN ligands of  $[\text{W}(\text{CN})_8]^{3-}$  bridged to  $\text{Mn}$  ion and other four were free. In contrast,  $\text{Mn}$  ion was coordinated by six nitrogen atoms of two 3-cyanopyridine molecules and four CN groups.  $\text{Cs}^{\text{I}}$  ion and  $\text{H}_2\text{O}$  molecule intercalated between the layers. The shortest  $\text{W}-\text{W}$  and  $\text{W}-\text{Mn}$  distances between the layers were  $9.33\text{ \AA}$  and  $11.25\text{ \AA}$ , respectively. The average




**Figure 1.** The crystal structure of **1**. (a) View of a layer along the  $b^*$  direction. (b) View of two layers along the  $a$  direction. Large white, large gray, large black, small black, small gray, and small white balls represent Mn, W, Cs, C, N, and O, respectively. H atoms are omitted for clarity.


interlayer distance was  $12.42\text{ \AA}$ . The coordination geometries of W and Mn sites were bicapped trigonal prism ( $C_{2v}$ ) and pseudo-octahedron ( $D_{4h}$ ), respectively. The reason why the present compound forms a two-dimensional layer is that the axial positions of Mn ion are capped by 3-cyanopyridine molecules, and only equatorial positions are available for bridging with  $[\text{W}(\text{CN})_8]^{3-}$ .

The magnetization vs temperature plots for **1** are shown in Figure 2a. The spontaneous magnetization appeared at a  $T_c$  of 35 K. The magnetization vs external magnetic field plot showed that the coercive field ( $H_c$ ) was about  $1\text{ G}$ <sup>13</sup> and the saturation magnetization ( $M_s$ ) value was  $4.1\text{ }\mu_{\text{B}}$  at 5 K (Figure 2b). This  $M_s$  value is close to the expected saturation value of  $4.0\text{ }\mu_{\text{B}}$  assuming that the present compound is a ferrimagnet. This result suggests that an antiferromagnetic interaction operates between  $\text{W}^{\text{V}}$  ( $S = 1/2$ ) and  $\text{Mn}^{\text{II}}$  ( $S = 5/2$ ) ions in the inside of the layer<sup>14</sup> and a ferromagnetic interaction operates between the layers.

We considered the origin of the ferrimagnetism in this compound, based on the results of DV-X $\alpha$  calculation<sup>15</sup> of  $\text{W}(\text{CN})_8$  and  $\text{Mn}(\text{NC})_4(3\text{-cyanopyridine})_2$  units. For the calculation, the atomic coordinates determined by X-ray analysis were used.  $A_1$  ( $d_{z^2}$ ) orbital is occupied by an unpaired electron of  $[\text{W}(\text{CN})_8]^{3-}$  and five 3d orbitals ( $B_{1g}, B_{2g}, A_{2g}$ , and two  $A_{1g}$ ) are occupied by unpaired electrons of  $\text{Mn}^{\text{II}}$  as shown in Figure 3. Although the molecular symmetrical axes of these metal ions are twisted, the antiferromagnetic superexchange interaction ( $J_{\text{AF}}$ ) is



**Figure 2.** (a) The magnetization vs temperature plots of 1: (■) field-cooled magnetization obtained with decreasing temperature (60 K  $\rightarrow$  2 K) in an external magnetic field of 10 G; ( $\Delta$ ) zero-field-cooled magnetization with increasing temperature (2 K  $\rightarrow$  60 K) in the applied magnetic field of 10 G after the temperature was first lowered in zero field; ( $\circ$ ) remanent magnetization obtained with increasing temperature (2 K  $\rightarrow$  60 K) after the temperature was first lowered in the applied magnetic field of 10 G. (b) Magnetization vs external magnetic field plots of 1 at 5 K.



**Figure 3.** Schematic illustration of  $\pi$ -like orbital interaction between  $\text{W}^{\text{V}}$  and  $\text{Mn}^{\text{II}}$  through the bridged cyanide (top), and the electronic configuration on  $\text{W}^{\text{V}}$  and  $\text{Mn}^{\text{II}}$  sites, based on the DV-X $\alpha$  calculation of  $\text{W}(\text{CN})_8$  and  $\text{Mn}(\text{NC})_4(\text{3-cyanopyridine})_2$  units (bottom).

expected to operate between the  $A_1(d_{z^2})$  magnetic orbital of  $W^V$  and  $A_{2g}(d_{x^2-y^2})$  one of  $Mn^{II}$  through the cyano-bridge, resulting in an antiparallel ordering of magnetic spins of  $W^V$  and  $Mn^{II}$  in the inside of the layer. In contrast, the dipole-dipole interaction may cause a ferromagnetic interaction among layers.<sup>16</sup>

In summary, we have prepared a new type of two-dimensional cyano-bridged Mn–W molecule-based magnet with a  $T_c$  of 35 K. So far, we have prepared a zero-, two-, and three-dimensional magnetic compounds in Mn–W cyano-bridged system. The key of the strategy to control the dimensionality in this system is the choice of an adequate coordinated molecule. It is theoretically predicted that a spontaneous magnetization should

not appear in the Heisenberg type of two-dimensional magnetic materials. However, the interlayer distance is not large enough to neglect the interactions operating between layers. If larger organic molecules are used as a coordinated molecule in this system, pure two-dimensional magnetic materials may be obtained. Furthermore, the structural and dimensional flexibilities of octacyanotungstate-based magnets allow us to design a new functional magnet such as photo-induced magnetization.<sup>4a,4b,17</sup> The works along this line are under way.

## References and Notes

- 1 a) O. Kahn, "Molecular Magnetism," VCH, New York (1993). b) J. S. Miller and A. J. Epstein, *Angew. Chem., Int. Ed. Engl.*, **33**, 385 (1994). c) J. S. Miller, *Inorg. Chem.*, **39**, 4392 (2000). d) P. Gutlich, Y. Garcia, and T. Woike, *Coord. Chem. Rev.*, **219–221**, 839 (2001).
- 2 a) T. Mallah, S. Thiebaut, M. Vergaquer, and P. Veillet, *Science*, **262**, 1554 (1993). b) D. A. Pejakovic, J. L. Manson, J. S. Miller, and A. J. Epstein, *Synth. Met.*, **122**, 529 (2001). c) K. Hashimoto and S. Ohkoshi, *Philos. Trans. R. Soc. London, Ser. A*, **357**, 2977 (1999). d) M. Ohba and H. Okawa, *Coord. Chem. Rev.*, **198**, 313 (2000).
- 3 a) S. Ohkoshi, T. Iyoda, A. Fujishima, and K. Hashimoto, *Phys. Rev. B*, **56**, 11642 (1997). b) S. Ohkoshi, Y. Abe, A. Fujishima, and K. Hashimoto, *Phys. Rev. Lett.*, **82**, 1285 (1999). c) S. Ohkoshi, T. Hozumi, and K. Hashimoto, *Phys. Rev. B*, **64**, 132404 (2001).
- 4 a) G. Rombaut, M. Verelst, S. Golhen, L. Ouahab, C. Mathoniere, and O. Kahn, *Inorg. Chem.*, **40**, 1151 (2001). b) S. Ohkoshi, N. Machida, Y. Abe, Z. J. Zhong, and K. Hashimoto, *Chem. Lett.*, **2001**, 312. c) R. Podgajny, T. Korzeniak, M. Balanda, T. Wasiutynski, W. Errington, T. J. Kemp, N. W. Alcock, and B. Sieklucka, *Chem. Commun.*, **2002**, 1138.
- 5 J. G. Leipoldt, S. S. Basson, and A. Roodt, *Adv. Inorg. Chem.*, **32**, 241 (1993).
- 6 Z. J. Zhong, H. Seino, Y. Mizobe, M. Hidai, M. Verdaguer, S. Ohkoshi, and K. Hashimoto, *Inorg. Chem.*, **39**, 5095 (2000).
- 7 Z. J. Zhong, H. Seino, Y. Mizobe, M. Hidai, A. Fujishima, S. Ohkoshi, and K. Hashimoto, *J. Am. Chem. Soc.*, **122**, 2952 (2000).
- 8 The compound **1** was prepared by the reaction of  $Cs_3[W(CN)_8] \cdot 2H_2O$  with 1 equiv of  $MnCl_2 \cdot 4H_2O$  and 2 equiv of 3-cyanopyridine in an aqueous solution at room temperature. The obtained compound was a dark purple prismatic crystal. Its elemental analyses were carried out by standard microanalytical methods and inductively coupled plasma optical emission. Found: C, 29.8; H, 1.36; N, 20.7; Cs, 16.0; Mn, 6.83; W, 22.8. Calcd for:  $C_{20}H_{10}CsMnN_{12}OW$ : C, 29.9; H, 1.25; N, 20.9; Cs, 16.5; Mn, 6.82; W, 22.8.
- 9 M. Isaq, S. P. Gupta, S. D. Sharma, and S. Ahmad, *Asian J. Chem.*, **10**, 1066 (1998).
- 10 B. Sieklucka, *J. Chem. Soc., Dalton Trans.*, **1997**, 896.
- 11 R. Podgajny, B. Sieklucka, and W. Lasocha, *J. Chem. Soc., Dalton Trans.*, **2000**, 1799.
- 12 Crystal data for  $Cs^I[Mn^{II}(3\text{-cyanopyridine})_2\{W^V(CN)_8\}] \cdot H_2O$ :  $C_{20}H_{10}N_{12}OMnCsW$ , fw = 806.07; triclinic; space group  $P\bar{1}$ ;  $a = 7.3394(6)\text{\AA}$ ;  $b = 13.907(1)\text{\AA}$ ;  $c = 14.687(2)\text{\AA}$ ;  $\alpha = 115.915(9)^\circ$ ;  $\beta = 90.076(10)^\circ$ ;  $\gamma = 96.058(9)^\circ$ ;  $V = 1339.0(3)\text{\AA}^3$ ;  $Z = 4$ ;  $d_{\text{calcd}} = 1.999\text{ g/cm}^3$ ;  $T = 296(1)\text{ K}$ . Of the collected 6622 reflections, 6143 were unique ( $R_{\text{int}} = 0.026$ ). The structure was solved by the heavy-atom Patterson methods and refined on F to R ( $R_w = 0.037$  (0.042) using 4983 reflections with  $I > 3.00\sigma(I)$ ). The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically. All calculations were performed using the teXsan crystallographic software package of Molecular Structure Corporation.
- 13 The small  $H_c$  value is due to small single ion anisotropy of  $Mn^{II}$  and  $W^V$  ions.<sup>6</sup>
- 14 The observed  $\chi T$  value of  $3.70\text{ G cm}^3\text{ mol}^{-1}$  at  $T = 300\text{ K}$  was lower than spin-only value of  $4.75\text{ G cm}^3\text{ mol}^{-1}$ . This result also indicates that the present compound is a ferrimagnet. Note that the local minimum point in the  $\chi T - T$  plots was not observed in the temperature range of  $35\text{ K} < T < 300\text{ K}$ . It is expected that the local minimum point may exist in higher temperature region.<sup>6</sup>
- 15 H. Adachi, M. Tsukada, and C. Satoko, *J. Phys. Soc. Jpn.*, **45**, 875 (1978).
- 16 M. Kurmoo, *Philos. Trans. R. Soc. London, Ser. A*, **357**, 3041 (1999).
- 17 a) O. Sato, T. Iyoda, A. Fujishima, and K. Hashimoto, *Science*, **272**, 704 (1996). b) S. Ohkoshi, S. Yorozu, O. Sato, T. Iyoda, A. Fujishima, and K. Hashimoto, *Appl. Phys. Lett.*, **70**, 1040 (1997). c) T. Yokoyama, K. Okamoto, T. Ohta, S. Ohkoshi, and K. Hashimoto, *Phys. Rev. B*, **65**, 644381 (2002).